AMBIENT AIR QUALITY By CHIRAG BHIMANI, Dy. Environmental Engineer, GUJARAT POLLUTION CONTROL BOARD, GANDHINAGAR

AMBIENT AIR QUALITY Definition:

am·bi·ent

adjective

1. of the surrounding area or environment:
2. completely surrounding; encompassing:

AMBIENT AIR QUALITYDefinition:

air

-noun

- a. A colorless, odorless, tasteless, gaseous mixture, mainly nitrogen (approximately 78 percent) and oxygen (approximately 21 percent) with lesser amounts of argon, carbon dioxide, hydrogen, neon, helium, and other gases.
- b. This mixture with varying amounts of moisture and particulate matter, enveloping the earth; the atmosphere.

AMBIENT AIR QUALITY What Is Ambient Air?

Defined as any unconfined part of the Earth's atmosphere, ambient air is the outdoor air in which humans and other organisms live and breathe. The content and quality of ambient air is directly affected by the day-to-day activities of humans. In turn, ambient air quality has a direct effect on both public health and the welfare of the Earth's ecosystems.

AMBIENT AIR QUALITY About Ambient Air

Air normally has no color, odor, or taste. It is a mixture of gases, primarily nitrogen, at about 78%, and oxygen, at about 21%, with the remaining 1% composed of carbon dioxide, methane, hydrogen, argon, and helium. Anthropogenic Sources (Human activities), such as manufacturing and the burning of fossil fuels, cause changes in the chemical composition of ambient air through the release of chemical and industrial pollutants into the atmosphere.

Ambient air pollutants may include gases or particulate matter, which are small particles of dust, smoke, ash, pollen, or other substances. Many air pollutants have been found to be harmful to both the environment and human health. Pollutants known to have adverse health effects are called criteria pollutants. Criteria pollutants include ozone, lead, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter.

Ambient air pollutants are :

1. Natural sources

Dust from natural sources, Methane, emitted by the digestion of food by animals, Radon gas from radioactive decay within the Earth's crust, Smoke and carbon monoxide from wildfires

Ambient air pollutants are :

1. Natural sources (Continued)

Vegetation, in some regions, emits environmentally significant amounts of VOCs on warmer days which react with primary anthropogenic pollutants—specifically, NOx, SO2, and anthropogenic organic carbon compounds—to produce a seasonal haze of secondary pollutants volcanic activity, which produce sulfur, chlorine, and ash particulates

Anthropogenic sources (Human Activity) are :

"Stationary Sources" include smoke stacks of power plants, manufacturing facilities (factories) and waste incinerators, as well as furnaces and other types of fuelburning heating devices

"Mobile Sources" include motor vehicles, marine vessels, aircraft and the effect of sound etc.

Anthropogenic sources (Human Activity) (Continued):

Chemicals, dust and controlled burn practices in agriculture and forestry management.

Fumes from paint, hair spray, varnish, aerosol sprays and other solvents,

Waste deposition in landfills, which generate methane.

Military, such as nuclear weapons, toxic gases, germ warfare and rocketry

AMBIENT AIR QUALITY Importance of Ambient Air

Certain populations are most likely to be adversely affected by criteria pollutants in ambient air. These include infants, children, the elderly, and people with cardiopulmonary conditions. In children, criteria pollutants have been shown to increase the risk of respiratory tract infections and worsen the severity of asthma attacks. In adults, exposure to particulate matter is associated with an increased risk of hospitalization and death due to cardiovascular disease.

AMBIENT AIR QUALITY Importance of Ambient Air

In the environment, changes in ambient air contribute to the development of acid rain and the greenhouse effect, the trapping of solar radiation in the Earth's atmosphere due to the presence of carbon dioxide, methane, and other gases. Ambient air pollution also contributes to depletion of the ozone layer, the region of the atmosphere that protects the Earth from harmful types of ultraviolet radiation. **AMBIENT AIR QUALITY Importance of Ambient Air** HISTORICAL INCIDENCES OF POOR AMBIENT AIR QUALITY

1. The Great Smog of '52 or Big Smoke was a severe air pollution event that affected London, England, during December 1952. A period of cold weather, combined with an anticyclone and windless conditions, collected airborne pollutants mostly from the use of coal to form a thick layer of smog over the city. It endured from Friday 5 to Tuesday, 9 December 1952, and then dispersed quickly after a change of weather.

AMBIENT AIR QUALITY Importance of Ambient Air

Although it caused major disruption due to the effect on visibility, and even penetrated indoor areas, it was not thought to be a significant event at the time, with London having experienced many smog events during the past. During the succeeding weeks however, medical reports estimated that 4,000 had died prematurely and 100,000 more were made ill because of the smog's effects on the human respiratory tract. More recent research suggests that the number of fatalities was considerably greater at about 12,000.

It is considered the worst air pollution event of the history of the United Kingdom and the most significant in terms of its effect on environmental research, government regulation, and public awareness of the relationship between air quality and health.

Page 14

AMBIENT AIR QUALITY Importance of Ambient Air

IMPACT ON LONDON

Although London was accustomed to thick fogs, this one was denser and longer-lasting than any previous fog. Visibility was reduced to a few yards making driving difficult or impossible.

Public transport ceased, apart from the London Underground; and the ambulance service stopped functioning, forcing sick people to transport themselves to hospital. The smog even seeped indoors, resulting in the cancellation or abandonment of concerts and film screenings as visibility decreased in large enclosed spaces, and stages and screens became harder to see from the seats. Outdoor sports events were also affected.

Page 15

AMBIENT AIR QUALITY Combating Ambient Air Pollution

To combat the detrimental effects of ambient air pollution, air quality standards have been established throughout the industrialized world. In, India The Air (Prevention and Control of Pollution) Act was enacted in 1981 wherein Ambient Air Quality Standards are prescribed and amended from time to time. These standards are designed to safeguard the public health, ensure the welfare of animals and crops, and protect the health of the ecosystems.

AMBIENT AIR QUALITY Ambient Air Standards in INDIA

S.	Pollutant	Time Weighted	Concentration in Ambient Air				
No.		Average	Industrial, Residential, Rural and Other Area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measuremen		
(1)	(2)	(3)	(4)	(5)	(6)		
1	Sulphur Dioxide (SO ₂), µg/m ³	Annual*	50	20	- Improved West and Gaeke		
		24 hours**	80	80	-Ultraviolet fluorescence		
2	Nitrogen Dioxide (NO ₂), µg/m ³	Annual*	40	30	- Modified Jacob & Hochheiser (Na-		
	() of pp m	24 hours**	80	80	Arsenite) - Chemiluminescence		
3	Particulate Matter (size less than	Annual*	60	60	 Gravimetric TOEM 		
	10μm) or PM10 μg/m ³	24 hours**	100	100	- Beta attenuation		
4	Particulate Matter (size less than	Annual*	40	40	 Gravimetric TOEM 		
	2.5µm) or PM2.5 µg/m3	24 hours**	60	60	- Beta attenuation		
5	Ozone (O ₃) ug/m ³	8 hours**	100	100	- UV photometric - Chemilminescence		
		1 hour**	180	180	- Chemical Method		
6	Lead (Pb) ug/m3	Annual*	0.50	0.50	 AAS /ICP method after sampling on EPM 2000 		
		24 hours**	1.0	1.0	or equivalent filter paper - ED-XRF using Teflon filter		
7	Carbon Monoxide (CO)	8 hours**	02	02	- Non Dispersive Infra Red (NDIR)		
	mg/m ³	1 hour**	04	04	spectroscopy		
8	Ammonia (NH ₃) µg/m ³	Annual* 24 hours**	100 400	100 400	-Chemiluminescence -Indophenol blue method		

NATIONAL AMBIENT AIR QUALITY STANDARDS

AMBIENT AIR QUALITY Ambient Air Standards in INDIA

(1)	(2)	(3)	(4)	(5)	(6)
9	Benzene (C ₆ H ₆) µg/m ³	Annual*	05	05	Gas chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis
10	Benzo(o)Pyrene (BaP) - particulate phase only, ng/m ³	Annual*	01	01	 Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As), ng/m ³	Annual*	06	06	 AAS /ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni), ng/m ³	Annual*	20	20	AAS /ICP method after sampling on EPM 2000 or equivalent filter paper

 Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

** 24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

AMBIENT AIR QUALITY Monitoring Ambient Air Pollution

Now that we know the detrimental effects of Ambient Air Pollution and also have Norms or Standards for Ambient Air Quality, measuring and monitoring the same is equally and of utmost important.

There are various methods of Ambient Air Quality Monitoring.

Some of them are :

AMBIENT AIR QUALITY Ambient Air Quality Monitoring

Based on frequency of Monitoring

- **1. Batch Monitoring**
- 2. Continuous Monitoring

Based on pollutants monitored

- 1. High Volume Sampler
- 2. AAQM PM₁₀ Respirable Dust Sampler
- 3. AAQM PM_{2.5} Sampler

AMBIENT AIR QUALITY Ambient Air Quality Monitoring

High Volume Sampler

Page 21

AMBIENT AIR QUALITY Ambient Air Quality Monitoring

AAQM – PM₁₀ Respirable Dust Sampler

AMBIENT AIR QUALITY What Next ???

We have set of standards for Ambient Air Quality so that the pollutants released due to Anthropogenic Acitivities is not detrimental to Human Health and the Environment.

But is that enough? Does our obligation end there? What more can be done?

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that solve the mathematical equations and algorithms which simulate the pollutant dispersion. The dispersion models are used to estimate or to predict the downwind concentration of air pollutants or toxins emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases.

Such models are important to governmental agencies tasked with protecting and managing the ambient air quality. The models are typically employed to determine whether existing or proposed new industrial facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS). The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants.

Air dispersion models are also used by public safety responders and emergency management personnel for emergency planning of accidental chemical releases. Models are used to determine the consequences of accidental releases of hazardous or toxic materials, Accidental releases may result fires, spills or explosions that involve hazardous materials, such as chemicals or radionuclides.

The results of dispersion modeling, using worst case accidental release source terms and meteorological conditions, can provide an estimate of location impacted areas, ambient concentrations, and be used to determine protective actions appropriate in the event a release occurs. Appropriate protective actions may include evacuation or shelter-in-place for persons in the downwind direction.

AMBIENT AIR QUALITY About Air Model:

The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include:

 Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class"), the ambient air temperature, the height to the bottom of any inversion aloft that may be present, cloud cover and solar radiation.

AMBIENT AIR QUALITY About Air Model:

- Source term (the concentration or quantity of toxins in emission or accidental release source terms) and temperature of the material
- Emissions or release parameters such as source location and height, type of source (i.e., fire, pool or vent stack)and exit velocity, exit temperature and mass flow rate or release rate.

AMBIENT AIR QUALITY About Air Model:

- Terrain elevations at the source location and at the receptor location(s), such as nearby homes, schools, businesses etc.
- The location, height and width of any obstructions (such as buildings or other structures) in the path of the emitted gaseous plume, surface roughness or the use of a more generic parameter "rural" or "city" terrain.

AMBIENT AIR QUALITY Types of Air Models:

AERMOD - An atmospheric dispersion model based on atmospheric boundary layer turbulence structure and scaling concepts, including treatment of multiple ground-level and elevated point, area and volume sources. This model was in development for approximately 14 years before being officially accepted by the U.S. EPA.

CALPUFF - A non-steady-state puff dispersion model that simulates the effects of time- and space-varying meteorological conditions on pollution transport, transformation, and removal. CALPUFF can be applied for long-range transport and for complex terrain.

AMBIENT AIR QUALITY Types of Air Models:

BLP - A Gaussian plume dispersion model designed to handle unique modelling problems associated with industrial sources where plume rise and downwash effects from stationary line sources are important.

CALINE3 - A steady-state Gaussian dispersion model designed to determine pollution concentrations at receptor locations downwind of highways located in relatively uncomplicated terrain.

AMBIENT AIR QUALITY Types of Air Models:

CTDMPLUS - A Complex Terrain Dispersion Model (CTDM) plus algorithms for unstable situations (i.e., highly turbulent atmospheric conditions). It is a refined point source Gaussian air quality model for use in all stability conditions (i.e., all conditions of atmospheric turbulence) for complex terrain.

OCD - Offshore and Coastal Dispersion Model (OCD) is a Gaussian model developed to determine the impact of offshore emissions from point, area or line sources on the air quality of coastal regions. It incorporates overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline.

AMBIENT AIR QUALITY About AERMOD:

The AERMOD atmospheric dispersion modeling system is an integrated system that includes three modules:

A steady-state dispersion model designed for short-range (up to 50 kilometers) dispersion of air pollutant emissions from stationary industrial sources.

A meteorological data preprocessor (AERMET) that accepts surface meteorological data, upper air soundings, and optionally, data from on-site instrument towers. It then calculates atmospheric parameters needed by the dispersion model, such as atmospheric turbulence characteristics, mixing heights, friction velocity, Monin-Obukov length and surface heat flux.

AMBIENT AIR QUALITY About AERMOD:

A terrain preprocessor (AERMAP) whose main purpose is to provide a physical relationship between terrain features and the behavior of air pollution plumes. It generates location and height data for each receptor location. It also provides information that allows the dispersion model to simulate the effects of air flowing over hills or splitting to flow around hills.

AERMOD also includes PRIME (Plume Rise Model Enhancements) which is an algorithm for modeling the effects of downwash created by the pollution plume flowing over nearby buildings.

AMBIENT AIR QUALITY Output from AERMOD:

These softwares and models can give a variety of outputs right from numerical tables to coloured graphs and 3 D representations. They can also generate wind roses and pollution roses for the given condition and location. Thus with the advancement in technolodies it has become possible to predict the ambient air quality upto a certain extent for an environmentalist.

ISC-AERMOD View

www.weblakes.com

ISC-AERMOD View

www.weblakes.com

6	s) 📂 📳	BREEZE 3D Analyst							
6	Home	Data 3D	Map Cros	Section Contributio	n Distribution Table Rep	port	383364.2, 4741441.2 🧭		
0.6	<mark>) Pan</mark> S Zoom In S Zoom Out	C Projection View Extent View Extent All	Contours Legend Scale	Data Points Labels Threshold: Data Points	Tools	IS V Import Maps V Automatic Downlog 3DA_2.png Map Ma Type: PNG File Size: 623 KB Ma Dimension: 1024 v 768 pixele	Image ~		
Dz	ta Appeara	nce	13.20 11	68 9.26 7.60 8.47	11,18 13.32 12.83 12.25 18.43 28	8.60 37,54 43,44 46,29 42,86 34,35 25,20	17.99 13.02 9.74 7.57		
	Appearance BackColor LabelSpacing	e	15.08 15 13.90 16	70 14 08 10.74 8.86 33 18.30 16.66 2.05	1101 13.88 13.32 12.31 9.20 32 10.18 13.67 13.46 11.98 18.69 33	2.01 44.17 52.36 50.99 40.12 27.99 19.00 396 51.59 57.67 45.40 29.91 19.23 12.90	13,28 962 731 576 9.15 6.82 531 4.29		
	Elanking DecimalPlaces Filled Format	Ves 2 Ves Scientific	16.07 12 6.15 7.1	76 16.72 19.97 18.12	11.13 10:69 12:36 10:07 15:30 31 13.73 5.83 7.07 5.94 8.16 20 3.08 3.33 4.40 11	12 51 77 45 56 28 09 17 96 11 70 8 18 31 33 003 9 44 6 68 5 46 128 22 48 18 17	610 481 397 3 41 467 416 379 351		
	Labels Lines LineWidth Opacity RemoveInter	No Yes 1 50 No	6.00 6.0 6.10 6.4	5 5.56 5.09 5.57 1 4.58 3.43 2.25	5.59 2.84 0.46 0.56 1.75 1.23 0.58	0 7,07 6,61 8,29 13,75 12,61 11,66 10,49 15,62 12,00 16,95 15,27 (5,45	5.82 5.54 5.15 4.78 9.35 8.32 7.44 6.69		
	DataPoints DecimalPlaces Format Labels	s 2 Standard Ves	14.66 3.9	9 19 11-1 14 13 - 530 20 29 4.12 115 06 281 54	6.98 2.19 0.40 0.75 0.90 10.71 3.49	16.14 16.70 18.39 17.39 15.80	12.44 11.03 9.81 6.80		
	Fignvalues DecimalPlaces Format HighValues MarkerColor	5 2 Standard 1	19.61 9.9	1 2.98 271 44.54	13.90 25:58 80.05 41 73 14:58 15:59 42 43 29 70 83:65 147 45 24 76 18:11 14	n 119.50 17.09 22.59 23.18 21.93 19.94 15.20 4 69 18 46 22.77 26 19 98 78 28 58 26 20	17.55 15.12 13.95 11.20		
•	MarkerSize	10 Visible	1.29 1.3	6 1 81 3 80 14 89	e5.82_66.74 50.06 27.13 21.10 17	7,15 17,67 22.44 26.50 80.66 33.21 32.19	28.79 24.71 20.88 17.65		
	Domain HighValues Maps	Visible	6.30 4 10	56 6.37 19.55 39.74	99 86 45.88 32 45 24.60 22.50 21	9.29 17 54 20.78 25.39 29.61 33.17 34.55 1.73 19.48 20.46 23.62 27.11 50.40 33.05	33.7 ug/m**3		
	PolygonObje Puffs Radius	Visible Visible Visible	22.51 .4.3	11 76 30.34 43.21	47.61 39.95 29.20 23.32 23.10 24	4.12 22.66 21.52 22.45 24.72 27.33 29.84	31.7 1.200E+01		

6	N 📂 🗉	🥝 📲 - 🗦 👘		Map - BR	EEZE 3D Analyst	- AERMOD Facility	Terrain G95.amz			- = x
6	Home	Data 3D	Map Cross	Section Contribution	Distribution	Table Report			348222.7, 47	760561.4 🧭
0.6 3	V Pan Zoom In Zoom Out	C Projection	Contours Legend Scale	Data Points Labels Threshold: Data Points	Ruler Interpolation Information	Polygons +	 ☑ Import Maps → ☑ Download Maps ☑ Map Manager Maps 	Automatic Refresh Redraw	Image - Shapefile W Animate	
D		nce	100-00		STATE OF THE PARTY		1000	100000	No. TPLE	Contract of the local division of the local
			The second				Arrist Martin	The state	Contra Dec	
۲	Ž 🕴							1. 1. 1.		The state
	Legend				15				1	RANK CO
	BackColor	DarkGray	in the second		155		1			-
	Border	No	100		J. (· · · · · · ·	
		3 11			1λ			5	1462	A Bran
	- Font	werdana, /pc	- 120		2		1000	500 F	m has be	and states
	Forecolor		- Andrews			3	Charles and the second			11000
	Visible	Vec			2 (· · · · 2	4 · · · · · / ·/	1 1 1 1 1 1 1 4 4 4 1 1	Ser little Bigger and	1	Stand St.
	PolygonObi	ects			SA 6)				
	Color	Black		and sets of a	J . J , S.	· · · · · · / · · ·				Conter .
	DefaultColors	True			····	· martille		AT A STATE OF A	and the second	- m
	Labels	No No			111111				110200	30
	MarkerSize	4	ALC: NO					4	2.0N. 112	609W
Ξ	Puffs					Sal				
	Boundary	Ves		1 - 1 - 2 - 2		1053.1	7			1.00
	Filled	Ves	Annual .					86		30000
	Labels	No No		I AI				× 4	and States of a	AP AN
	Lines	Ves Yes		📰 / · / · 🍸 ·		184 10 (1)				and the second
	LineWidth	1		1 5					had a	S STREET
	Opacity	50	1	4-1		· a a	~ 2		ALC: NOT STREET	10-10
	ScaleFactor	1	10	A		\sim ())				
	Radius	DarkGreen				101 11			A AL	1
	Color		1001			19/ U		1000		THE CHE
	LineWidth	3		· · · · · ·	- I - ford	57				4 Maria
	Scale	3								1000
	BackColor	DarkGrav	5						9.53	7E+02
	Border	No								14
	Dividers	4		1-1-1-12				AN CASE	ug/m	**3
	🗄 Font	Microsoft Sans Serif,		CALL AN	(0)					
	ForeColor	Black				100			1333	
	Visible	No No		and the second second	A		100 mm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	1.58	0E+02
	1				11/1	A	100 10 10 10	10 1 10 10	The part has	and the second s

THANK YOU

Page 43